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FIG. 10. Typical compaction surface E=q,(€,U-uE ) . The 
path on the surface shown as a heavy solid line is the locus 
of (E, u- UE' €) states taken at a material point during the 
passage of a wave. The dashed line is the projection of the 
path into the (E, u- UE) plane, and the small dotted loop is 
its projection into the (u - U E' €) plane. 

recorded waveform, is the equilibrium stress-strain 
curve. 

B. CoUapse Rule 

Inference of the function ¢ of Eq. (13) from a se
quence of steady waveforms of various amplitudes 
and speeds is, in principle, a straightforward 
matter. Let us suppose that the data consist of 
several particle-velocity records, along with 
a measurement of V for each wave. The equilibrium 
curve is found as described above and can now be 
considered known. Using Eqs. (9), the known values 
of Po and V, and the known initial conditions, the 
stress and strain histories can be determined. Let 
us consider a given time t*. From the stress 
history we read off a(t*), and from the strain his
tory E (t*) and E (t*) can be determined. Since the 
function a E(E) is known, we have values of E, a, and 
a - a E at t = t* and are thus able to plot a point of the 
surface ¢ as shown on Fig. 10. This process is 
repeated for a number of values t* for each of the 
records in hand to map out a portion of the surface. 
From each experimental record we obtain values 
of ¢ associated with (E, a- aE ) pOints lying on a 
curve in this plane (such as that shown by the dashed 
line in Fig. 10) that passes through the values Eo and 
El on the E axis, and is single valued in E. As an ex
ample we note that, in the case of a material gov
erned by the linear collapse rule and the quadratic 
equilibrium behavior, these curves are parabolas 
with their maximum value, (a- aE)max=Po~,B2[t(El 
- Eo)]2, taken at E=t(E1 + Eo). 

Families of steady waveforms obtained by means of 
the usual plate-impact experiments have the same 
initial states (ao, Eo), but different amplitudes. Since 
the Rayleigh lines corresponding to these waves do 
not cross, no two waves will have an (E, a- aE ) point 
in common, so no conflicting values of ¢ can arise. 
By the same token, we see that the process de
scribed will always lead to a function ¢ that repro
duces all of the observed waveforms exactly. 

The possibilities for fitting less general collapse 
rules such as that of Eq. (12) or the specific forms 
in the examples of Sec. IV to experimental data are, 
of course, more limited. If the surface ¢ (E, a - a E) 
determined by the means discussed above turns out 
to be a cylindrical sheet (in which case the genera
tors will be parallel to the E axis since this line is on 
the surface), then, of course, Eq. (12) is appropriate 
and the material is characterized by a curve in the 
(a- aE , e) plane. 

As a practical matter, it may be desirable to re
strict one's effort to fitting a simple collapse rule 
to available data. A collapse rule of the form of 
Eq. (12) is completely determined (over the range 
in question) by the highest-amplitude waveform in 
hand; it is just the locus of pOints (a - a E' E) ob
tained from this record. For most materials 
(idealized locking materials being the exception) 
a - a E ' and hence e, vanish at both initial and final 
strains in the wave profile, and for this reason the 
locus of the (a - a E' E) pOints will form a closed path 
in this plane that begins and ends at the origin. An 
example of such a path is shown as the small dotted 
loop on Fig. 10. If the collapse rule of Eq. (12) is 
appropriate, the path will be a single line that is 
retraced for the upper portion of the wave profile. 
If, however, the path is a wide loop, a strong strain 
dependence is indicated and Eq. (12) does not pro
vide an adequate model of the behavior. A less 
abstract check on the adequacy of the form is ob
tained by simply calculating lower-amplitude wave 
profiles and comparing them with experimental 
records. Collapse rules of such simple forms as 
those of Eqs. (14) and (26) can be established by 
choosing the coefficients T or T 1 and T 2' respec
tively, for best fit to the (a-aR , i:) curve. 

When the equilibrium response of the material is 
adequately represented by the locking model, steady
wave solutions are particularly simple and somewhat 
stronger statements can be made. For example, we 
see from Eq. (28) that a necessary condition for the 
applicability of the collapse rule of Eq. (22) is that 
the product (a1 - ao)5"be the same for each member 
of a family of wave profiles. Let us suppose that 
this is true in some instance, and that we would like 
to fit the waveforms of Eq. (29) to the data. Since 
we have determined the constant value of the quantity 
(a1 - ao) , Eq. (30) becomes a relationship giving 
a one-parameter family of coefficient pairs (To (0'2), 

0'2) for which all the waveforms given by Eq. (30) 
have the rise times observed in the experiments. 

The remaining parameter 0'2 can be adjusted to 
improve the agreement between the calculated and 
observed waveforms. As 0'2 is increased the upper 
portion of the waveform is steepened with the lower 
portion being spread more to keep the rise time the 
same. When an approximate fit of a Simple collapse 
rule to experimental observations is desired, the 
first thing to be decided upon is an appropriate 
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criterion of goodness 'of fit. Usually one would like a 
reasonable fit to a range of waveforms rather than a 
perfect fit to some and a large error for others. For 
this purpose, one of the more reasonable criteria 
of good fit would be agreement between theory and 
experiment on the amplitude dependence of rise time. 

VI. SUMMARY 

In the previous sections of this paper, we have pre
sented and discussed a simple theory of the dynamic 
compaction of porous solids. This theory elaborates 
the conventional theory of shock propagation in such 
a way that the observed shock structures can be 
described. It is not the ' only reasonable theory for 
this purpose, but does seem representative of sev
eral that could be proposed. We have shown that, for 
each Ipaterial, the theory can be fit exactly to all 
steady-wave profiles having a given initial state. 
The same is true of several other theories in which 
the collapse rule involves two independent variables. 
Theories involving collapse rules that are special 
cases of Eq. (13) can, in general, be fit only ap
prOximately to experimental observations. A brief 
discussion of how this fitting could be accomplished 
has been presented. Examination of a variety of 
solutions such as were given in Sec. IV is helpful 
in deciding on the form of a collapse rule appropri
ate to ·fitting a specific set of data. 

The conclusion that the collapse rule of Eq. (13) 
could be fit exactly to all steady-wave data following 
from the usual plate-impact experiment leaves open 
the question of how one can obtain a meaningful 
check of theory against experiment. From an ex
amination of the discussion of Sec. V we see that 
what is needed is an experiment involving a com
paction path that intersects the pencil of Rayleigh 
lines of the impact experiments. The two sorts of 
experiments that come to mind are those involving 
precompressed samples (so that the initial conditions 

. are changed) and those in which evolving waves are 
studied. The former are reasonable and simple to 
perform. The latter also seem promising, but are 
more difficult since the theoretical predictions to be 
compared with the experiments must follow from 
solutions of the partial differential Eq. (5), along 
with appropriate constitutive equations. 
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